Let’s Do Math with KCM
High School Algebra II
Function Simulations
Welcome!

Your host

Leah Dix White
Regional Consultant
Kentucky Center for Mathematics
leah.dix@louisville.edu
Kentucky Center for Mathematics

- KCM seeks to advance the knowledge and practice of effective mathematics teaching and learning, encompassing early childhood through adult education.
- KCM provides and develops statewide leadership, facilitate professional learning experiences, and cultivate innovation with the aim of improving mathematics education, practice and policy.

KCM Yearly Numbers

- 29 math courses taught
- 73 cohorts of teachers
- Over 1000 KY teachers attending
- Over 182 days of math professional learning
- Over $150,000 of math materials directly in the hands of teachers
- 109 school districts
- 300 KY schools
- 100 principals trained
- >5000 students impacted
- KCM Annual Math Conference national prominence

Closing the achievement gap for our KY math students.

Math Achievement Fund intervention students (3000) had an average of 10 percentile points gained as a direct result of KCM trained math interventionists.
Visit Our Website

www.kentuckymathematics.org
Today’s Session

- Research
- Standard
- Let’s Do the Math Rich Tasks Exploring Transformations of Functions
- Phet Simulations: Function Basics, Graphing Lines, Graphing Quadratics
- Conclusions and Generalizations
- Virtual Manipulatives
Research

Kebritchi, Hirumi, and Bai (2010) found computer mathematics games to have a positive significant effect on high school students' motivation and achievement in mathematics class.

Standards

KY.HS.F.8 Understand the effects of transformations on the graph of a function. MP.3, MP.5

a. Identify the effect on the graph of replacing \(f(x) \) by \(f(x) + k \), \(kf(x) \), \(f(kx) \) and \(f(x + k) \) for specific values of \(k \) (both positive and negative); find the value of \(k \) given the graphs.

b. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
Let’s Do the Math...

Task: Exploring Transformation of Functions

Consider the function

\[f(x) = x^5 + 2x^4 - 7x^3 - 8x^2 + 12x \]

How do the graphs of each of these modified versions of the function \(f(x) \) compare with the original?

\[
\begin{align*}
&f(x) + c \\
&f(x + c) \\
&f(cx) \\
&c \cdot f(x)
\end{align*}
\]
Function Simulations

Function Basics

How do the graphs of modified versions of any function compare with the original?

Graphing Lines

\[h(x) = mx + b \]

Graphing Quadratics

\[g(x) = ax^2 + bx + c \]
Conclusion & Generalizations

What can you conclude about their relationships to the graphs?

Is this true all functions?

What other digital representations of parabolas may we consider?

Fig. 1 The parabolic trajectory of the Angry Bird is highlighted during the launch.

Fig. 2 The diameter of an Angry Bird is the unit of measure on both axes.
Virtual Manipulatives

Geogebra

Phet Interactive Simulations

Desmos

Didax Math Virtual Manipulatives
KCM Support for Educators

Your host

Leah Dix White
Regional Consultant
Kentucky Center for Mathematics
leah.dix@louisville.edu
Upcoming Professional Learning

KCM

Kentucky Center for Mathematics

Home MAF Professional Learning Resources Annual Conference About Us

Apr 16

Statistics & Probability with Virtual Manipulatives

Facilitated by: Leah Dix

Downloads: TBD