

More Conceptual Understanding of Geometric Thinking

with Dee Crescitelli

Welcome!

Your host

Dee Crescitelli

Director Kentucky Center for Mathematics cresciteld1@nku.edu

The van Hiele Levels of Geometric Thinking

Critical Areas

FOR MATHEMATICS

7th and 8th Grade Geometry Clusters

Geometry	Geometry
(G)	(G)
 Draw, construct and describe geometrical figures and describe the relationships between them. Solve real-life and mathematical proinvolving angle area, surface area Stand volume. 	 Understand congruence and similarity using physical models, transparencies, or geometry software. derstand and apply the sean Theorem. eal-world and mathematical involving volume of rs, cones and spheres.

Can You Build It?

Can You Build It?

- A) A shape with just one square corner and four sides
- B) A shape with three square corners
- C) A shape with two pairs of parallel lines and NO right angles
- D) A triangle with three congruent sides and an obtuse angle
- E) A trapezoid with two congruent sides
- F) An equilateral triangle with a square corner
- G) A triangle with three acute angles and three congruent sides
- H) A triangle with no congruent sides, no congruent angles and 1 obtuse angle

Use the geoboard at the link below to build your shapes: https://www.geogebra.org/m/Hm4GU3gp#material/vpE8GWTY

•	•	•	•	•	٠	•	٠	•	٠	
•	•	·	·	·	•	·	•	٠	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	·	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•		·	·	•	
					•		•	•	•	

Standard Connection

MP.6, MP.7	Coherence KY.7.G.2→KY.8.G.1
triangle, or no triangle.	
when the conditions determine a unique triangle, more than one	meet the conditions of a triangle.
constructing triangles from three measures of angles or sides, noticing	and side lengths and determining when the given conditions do not
technology) geometric shapes with given conditions. Focus on	geometric shapes, constructing triangles with given angle measures
KY.7.G.2 Draw (freehand, with ruler and protractor and with	Emphasis is on taking given conditions and converting them to

KY.7.G.2

Draw (freehand, with ruler and protractor and with technology) geometric shapes with given conditions.

Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Developing Geometric Thinking through Activities That

Mosaics

MOSAICS

Invitation to Learn

Provide each student with a Seven Piece Mosaic Puzzle. Begin by asking, "What can we do with these pieces?" As students begin to explore, have them share and talk about what they have built. They may use all the pieces or only a few. "Children need ample time to explore and share their creations. Such play gives teachers a chance to observe how children use the pieces and to assess informally how they think and talk about pieces." (Van <u>tigle</u>, p. 312)

Lesson

 Have students explore all the possible ways to make the *Parallelogram* using their puzzle pieces.

The students may slide, flip, turn (rotate) their pieces. What two-piece combinations are possible? Ask the students which pieces were not used?

- Have students choose any two pieces, set the others to one side, and see how many different shapes can be made by joining them at the sides that match. Try pieces five and six.
- 3. Ask what pieces can be made from two others? Which ones cannot? Challenge: Find the one piece that can be made from three others. Solutions can be recorded by tracing around the larger pieces and then draw how the larger shape was made with the other pieces.
- 4. Can students make the Parallelogram with three pieces?
- 5. Have students make a short house and trace around it. Can they make the shape with two other pieces? Three pieces? Four pieces? Can they create a tall house with two pieces? Three pieces? (Remember: Touching edges have to be the same length.)
- 6. Have each student create their own puzzle using two, three, or four pieces; trace around the shape. Can students make this shape with other pieces? These may be done on cardstock and used as puzzles for other students to build with their puzzle pieces.

Mosaics

a. Solve real-world and mathematical problems involving area of two-dimensional objects composed of triangles, quadrilaterals and other polygons.

Shifting Shapes

the plane.

	Shifting Shapes	Teacher Guide	+
	By Desmos 15-30 minutes Transformations Distance Learning Transforming Shapes		
	Mobile Tablet Laptop		
	In this lesson, students explore transformations of plane figures and describe these movements in every "shift," "turn," "spin," "flip," and "mirror." Students are not expected to use formal math vocabulary yet. Thi need for agreeing upon common language and the chance for students to experiment with different ways	lay language using words lil is lesson provides both the i of describing some transfo	ke "slide," intellectual rmations ir

Inspired by and with gratitude to Illustrative Mathematics and OpenUp Resources. Download for free at https://openupresources.org.

0 0 0

Standard Connection KY.8.G.1 and KY.8.G.2

KY.8.G.1 Verify experimentally the properties of rotations, reflections	Emphasis is congruence transformations preserve corresponding		
and translations:	congruent lines, segments and angles.		
 Lines are congruent to lines. 	KY.HS.G.2		
 Line segments are congruent to line segments of the same 	Coherence KY.8.G.1→ KY.HS.G.3(+)		
length.			
 Angles are congruent to angles of the same measure. 			
 Parallel lines are congruent to parallel lines. 			
MP.5, MP.6			
KY.8.G.2 Understand that a two-dimensional figure is congruent to	Students understand a figure, called a pre-image, is congruent to		
another if the second can be obtained from the first by a sequence of	another figure, called the image, if the second figure can be obtained		
rotations, reflections and translations. Given two congruent figures,	by a sequence of congruence transformations performed on the first		
describe a sequence that exhibits the congruence between them.	figure. Students describe the sequence of congruence transformations		
MP.2, MP.7	necessary to transform one figure to a congruent second figure.		
	KY.HS.G.4		
	Coherence KY.8.G.2→ KY.HS.G.5		

Surface Area

Dynamic Paper - NCTM Illuminations

Activity		
Nets	Add 🔪	PDF 🛨 JPG 🛨
Shape: Pyramid		
Number of Sides:		Name:
All Edge Lengths Congruent		
Units: () inches () centimeters		
Side Length of Base: 2 in.		2
Height: 4 in.		

Surface & Area

No one needs to memorize all these formulas!!!

Give students experiences WITH the figures & they can build the connections

Shape	Surface Area Formula	Volume Formula		
Cube	$SA = 6s^2$ where s = length of the side	$V=s^3$ where $s=$ length of the side		
Cuboid	SA = 2(lw + lh + wh) where <i>l</i> = length, <i>w</i> = width, <i>h</i> = height	V = lwh where $l = length$, $w = width$, $h = height$		
Prism	SA = 2B + ph where B = area of base, p = perimeter of base, h = height	V = Bh where B = area of base, h = height		
Cylinder	$SA = 2\pi r^2 + 2\pi r h$ where r = radius, h = height	$V=\pi r^2 h$ where r = radius, h = height		
Hollow Cylinder	$SA = 2\pi rh + 2\pi Rh + 2(\pi R^2 - \pi r^2)$ where <i>R</i> = radius of the outer surface, <i>r</i> = radius of the inner surface	$V = \pi R^2 h - \pi r^2 h$ where <i>R</i> = radius of the outer surface, <i>r</i> = radius of the inner surface		
Cone	$SA = \pi r^2 + \pi rs$ where r = radius, s = slant height	$V=rac{1}{3}\pi r^2h$ where r = radius, h = height		
Pyramid	SA = area of base + area of each of the lateral faces Regular pyramid = area of base + $\frac{1}{2}ps$ where p = perimeter of the base, s = slant height Square pyramid = $b^2 + 2bs$ where b = length of the base, s = slant height	$V = \frac{1}{3}Bh$ where B = area of the base, h = height		
Sphere	$SA=4\pi r^2$ where $r=$ radius	$V=rac{4}{3}\pi r^3$ where $r=$ radius		
Hemisphere	$SA = 3\pi r^2$ where $r =$ radius	$V=rac{2}{3}\pi r^3$ where r = radius		

Standard Connection

KY.7.G.6b Nets as a STRATEGY for finding surface area and volume.

Standards	Clarifications
b. Solve real-world and mathematical problems involving volume	Students calculate with appropriate units, using nets as a
and surface area, using nets as needed, of three-dimensional	possible strategy for calculation as well as formulas for volume
objects including cubes, pyramids and right prisms.	and surface area, where appropriate.
MP.3, MP.4, MP.5	<u>KY.6.G.1</u>
A 42 P. LONG BACKARD CO. LECCE ALL CO.	<u>KY.6.G.2</u>
	Coherence KY.6.G.4 \rightarrow KY.7.G.6 \rightarrow KY.8.G.6

Informal deduction!

The van Hiele Levels of Geometric Thinking

Follow Us!

www.kentuckymathematics.org

👩 👩 👔 🦻 😢 Search

PROFESSIONAL ANNUAL HOME MAF LEARNING+ RESOURCES+ CONFERENCE+ ABOUT US+

Good News!

The KCM is hard at work to ensure Kentucky teachers have access to innovative professional development from home.

Through the newly launched <u>KCM Virtual</u> site, mathematics teachers from all grade levels will have access to live zoom meetings, video records and corresponding materials. <u>Read more</u>.

Focus on Fractions - May 4 - May 8

Focus on Geometry - May 11 - May 15

More Multiplicative Thinking - May 18 - May 22

KCM is here to support you!

Your host

Dee Crescitelli

Director Kentucky Center for Mathematics cresciteId1@nku.edu

